

Using green infrastructure to improve urban air quality

16th October, 2018 **Kirsti Ashworth**^{1*}, Nick Hewitt¹ & Rob MacKenzie²

* k.s.ashworth1@lancaster.ac.uk
 ¹ Lancaster Environment Centre, Lancaster University
 ² School of Geography, Earth and Environmental Sciences, University of Birmingham
 & Birmingham Institute of Forest Research (BIFoR)
 @BIFOR

Why urban air quality matters

- Air pollution is the biggest environmental risk to health
- 92% of global urban population live in cities that exceed WHO air quality guidelines
- Globally, outdoor air pollution kills
 ~3 million people/yr
- Air pollution causes ~50,000 premature deaths/yr in the UK
- Air pollution problem areas stubbornly refuse to go away!

World Health Organization, 2016; Landrigan, et al 2017 (The Lancet)

Sources of air pollution

Reduce | Extend | Protect to mitigate air pollution impacts

Reduce

The single most effective way to reduce urban air pollution

is to reduce emissions

Defra National Statistics Release: Emissions of air pollutants in the UK, 1970 to 2016

The index line is a comparator that shows the level of emissions if they had remained constant from the beginning of the time series.

Reduce

Annual levels of PM₁₀ and Ozone in the UK, 1987 to 2013

Using green infrastructure (GI) to improve air quality (GI4AQ)

Using green infrastructure (GI) to improve air quality (GI4AQ)

Protect | Deposition

Pollutant removal

- Rate of dry deposition to a surface depends (in part) on:
 - Surface area
 - Surface morphology
- GI increases both relative to bare ground / buildings (e.g. area times ~4)

BUT to be effective in reducing concentrations

- you need a large quantity of GI
- acting on a small volume of air

Protect | Street Trees

Jeanjean et al., Urban Forestry & Urban Greening, 22, 41–53, 2017. doi: 10.1016/j.ufug.2017.01.009

Protect | Green Roofs & Walls

- Green roofs and green walls increase deposition rates
- But they are only effective in reducing concentration if acting on a small volume of air
- Green roofs:
 - open to a large column of air
 - negligible effect on pollutant concentration
- Green **walls** can be effective IF:
 - acting on small volume of air
 - relatively large surface area

Pugh, et al. Environ. Sci. Technol., 46 (14), 7692-7699, 2012. doi: 10.1021/es300826w

Protect | Green Oases

- Green oasis =
 - no emission sources
 - small volume of air
 - relatively large surface area
 - GI can be used in many configurations to create green oases
- We don't currently know the degree of effectiveness of each

Extend & Protect | Green Barriers

- Impermeable barrier
- -> extends path length
- -> increasing dilution
- Green barrier
- -> also enhances deposition

Extend & Protect | Green Barriers

Urban Form and AQ

Biogenic VOCs

Vegetation emits biogenic VOCs

 \rightarrow formation of secondary pollutants O₃ and aerosol (PM)

Churkina et al., Environ. Sci. Technol. 51, 6120-6130, 2017. doi: 10.1021/acs.est.6b06514 The chemistry takes time \rightarrow impacts occur downwind of city

GI4AQ | Any Questions?

16th October, 2018 **Kirsti Ashworth**^{*}, Nick Hewitt & Rob MacKenzie

* k.s.ashworth1@lancaster.ac.uk